CONSTRADE BRASILEIRA DE GEOLOGIA SEDE - SÃO PAULO BOLETIM SBG - BIBLIOTECA n.º P17 data 08/8 DA

Sociedade Brasileira _{de} Geologia

VOLUME 9

NÚMERO 2

SETEMBRO DE 1960

SÃO PAULO — BRASIL

SEDE - SAO PAULO OCHEDADE BRASULFIRA DE GEOLEOL

BOLETIM

DA

SOCIEDADE BRASILEIRA DE GEOLOGIA

VOLUME 9

SETEMBRO DE 1960

NÚMERO 2

ÍNDICE

Beta-uranofânio de Perus, São Paulo, SP.	
Por William G. R. de Camargo e J. Moacir V. Cou- tinho	5
Notas preliminares sôbre a Geologia e Estrutura da Serra de	
Santana, Estado de São Paulo	
Por José Pereira de Queiroz Neto	13
Notas sôbre a Geologia da Serra do Tombador	
Por Paulo Anibal Marques de Almeida Rolff	25
Origin of certain cangas of the "Quadrilátero Ferrífero" of Mi-	
Por George C. Simmons	37
Intensity and extensity of Minerals from Barra Verde and Brejui	
Mines, Currais Novos, RN	
Por A. Bhaskara Rao	61
Novo método para diferenciar calcita de dolomita	
Por Juan C. Goñi	71
A new cromyocrinid from Brazil	
Por Harrell L. Strimple	75
Vale pré-glacial ao norte de Lavras do Sul, R.G.S.	
Por Henry Mau	79

Êste Boletim foi impresso com auxílio do CONSELHO NACIONAL DE PESQUISAS

and the property products of

BETA-URANOFÂNIO DE PERUS, SÃO PAULO, SP

Por

WILLIAM G. R. DE CAMARGO e J. MOACYR V. COUTINHO

Departamento de Mineralogia e Petrografia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo

ABSTRACT

Beta-uranophane has been identified in a pegmatite dike from Perus, São Paulo SP, Brazil, occuring in cavities as a secondary mineral.

The pegmatite dikes contain the following primary minerals: quartz, microcline black tourmaline, albite, apatite, garnet, pink tourmaline, lepidolite, and rare morganite. Other secondary uranium minerals occur mostly along cracks and fissures, such as autunite, phosphuranylite?, torbenite, uraniferous opal, and some other minerals not yet identified.

The small (about 0,2 mm) and needlelike beta-uranophane cristals show the crystallographic forms (100), (010), and (102). The cleavages (010) and (100) favour the fibrous character of crystals.

The optical constants, measured for Na light, revealed to be: X $(n\alpha) = 1,657$; Y $(n\beta) = 1,682$; Z $(n\gamma) = 1,703$ (calculated); maximum birefringence = 0,046; $2V_{\star} = 57^{\circ}$, extinction angle Z/c = 18-41°. Strong crossed optic plane dispersion being Z/c (r) > Z/c (v.).

Pleochroic colors: X = colorless; Y = yellow; Z = lemon yellow.

Darkest X ray lines: (A): 7, 75 — 3,90 — 3,51 — 3,20 (in a decreasing sequence of intensity).

INTRODUÇÃO

O mineral aqui descrito, também designado beta-uranotila, foi pela primeira vez identificado por Novacek (11) em ocorrência de Joachimsthal, Checoslováquia. Anteriormente, já havia sido estudado òpticamente por outros autores, que confundiram o mineral com o carbonato schroeckingerita (9). Outras ocorrências de beta-uranofânio são conhecidas em Bedford, N. Y. (2), errôneamente rotulado como schroeckingerita, em Mitchell, N. C. (15), Boulder Batholith, Montana (4), em Wölsendorf, Bavária (14), em Queensland, Austrália (5), em Sankara, Nellore (10), e em Kenora, Ontrário (13), além de outras ocorrências de menor importância.

OCORRÊNCIA

O beta-uranofânio ocorre em Perus em cavidades poliédricas (Fig. 1) com 1 a 2 cm de diâmetro, lembrando moldes negativos de cristais dissolvidos. O mineral é aí encontrado em agregados entrelaçados, crostas e tufos radiados isolados, implantados nas paredes da cavidade. Além do beta-uranofânio, podem ocorrer em associação na mesma cavidade, sílica amorfa e albita secundária, formando compartimentos que dão uma estrutura celular à cavidade.

Apenas 4 pequenas drusas foram encontradas e coletadas na amostra de rocha obtida. Em nenhuma delas, entretanto, encontrou-se associado ao beta-uranofânio, qualquer vertígio de uraninita ou qualquer outro mineral uranífero primário.

Fig. 1 — Forma das cavidades contendo beta-uranofânio.

As pequenas cavidades de dissolução aparecem em jazida de feldspato constituída por pegmatito inalterado, que forma bolsas ou lentes irregulares desenvolvidas em granito turmalinífero, por sua vez encaixado em micaxistos e hornfels calcosilicático.

Os minerais primários do pegmatito são principalmente os seguintes: quartzo, microclínio branco, turmalina preta, albita azulada, apatita esverdeada, granada e mais subordinadamente ou em concentração localizada: turmalina rósea (rubelita), lepidolita e raríssima morganita.

As paredes das cavidades poliédricas descritas fazem contáto brusco, sem transição, com os minerais frescos do pegmatito.

Ainda, como mineral primário dêsses pegmatitos já foi relatada a ocorrência de uraninita (Knecht, 8), porém não encontrada pelos autores.

Além do beta-uranofânio, tem-se registrada o ocorrência relativamente abundante, ao longo de fraturas, de diversas variedades de minerais secundários, quase todos uraníferos: autunita, torbenita, phesphuranylita?, opala uranífera e outros ainda não determinados.

MORFOLOGIA E PROPRIEDADES FÍSICAS GERAIS

Os tufos e agregados são constituídos por cristais alongados, aparentemente primáticos (Figs. 2 e 3), devido ao extraordinário desenvolvimento dos pinacóides (100) e (010). As agulhas são minúsculas, não medindo mais do que 0,2 x 0,03 mm.

Os cristais mais bem formados constam das formas simples (100), (010) e do pinacóide oblíquo (h01).

As medidas angulares, conseguidas ao microscópico, revelaram os seguintes valôres:

 $100 / 010 = 90^{\circ}$ $100 / hol = 43^{\circ}$

O ângulo de 43° , obtido diversas vêzes na platina do microscópico, com os cristais apoiados sôbre a face de (010), indica uma grande discrepância em confronto com o resultado médio de $48^{\circ}36'$, determinado por Steinocher e Novacek (15), e $46^{\circ}01'$, obtido por Gorman e Nuffield (6). Considerando, entretanto, que as medidas ao microscópio são mais imprecisas, e que nos próprios desenhos de Novacek, exibe-se o ângulo de 43° (suplementar de 137°) entre as diversas faixas de zoneamento, sub-paradelas às faces (100) e (hol), não temos dúvida em estabelecer para (hol) dos cristais de Perus, o símbolo numérico (102), que Gorman atribue ao cristais de Ontário.

As faces (102) são totalmente corróidas, o que fornece aos cristais, quando observados lateralmente ao microscópio, indícios de fibrosidade.

Essa fibrosidade é ainda favorecida pelas clivagens (100) e (010).

Geminados de contáto, segundo (100), comuns em outras ocorrências, não foram observados nos cristais de Perus.

Os cristais são em geral zonados, (Fig. 3).

A côr dos cristais de Perus é amarelo gema de ovo. Com luz ultravioleta (Minerallight), o mineral exibe fraca, mas bem caracterizada fluorescência de côr amarelo sujo. Dureza 2-3.

PROPRIEDADES ÓPTICAS

Os índices de refração, obtidos com luz monocromática de sódio, pelo método de imersão no microscópio, são em geral concordantes com os da literatura (Frondel, 5) (Tabela 1).

	Bedford	Mitchell	Wölsendorf	Joachimsthal	Argentina	
Nx Ny	1,658	1,663	1,668	1,661-1,671 1,682-1,694	1,660 1,683	
Nz	1,685	1,697	1,695	1,689-1,702	1,697	
Bir.	0,027	0,034	0,027	0,028-0,031	0,037	
2Vx 40-45°		62°	peq.	71°	50°	
Z/c 30°		32°	36°	44-57°	24-36°	
	Portugal	França	Utah	Montana	Perus	
Nx	1,670-1,678	1,665	1,665	1,652-1,656	1,657	
Ny	1,698-1,723	1,687	1,684	1,678-1,682	1,682	
Nz	1,715-1,730	1,695	1,695	1,682-1,686	1,703 (calc.)	
Bir.	0,045-0,052	0,030	0,030	0,030	0,046	
2Vx	até 40°	7	30°	10-20°	57°	
Z/c	18-30°	40°		30-40°	18-41°	

TABELA 1

FIG. 2 — Projeção do cristal sôbre 100, exibindo clivagens e orientação óptica.

FIG. 3 — Projeção do cristal sôbre 010 exibindo clivagens, orientação óptica e z o n e a m e n t o c o m modificação gradual dos ângulos de extinção. Na última camada superior, a extinção muda bruscamente.

FIG. 4 — Dispersão cruzada do plano dos eixos ópticos.

Embora os cristais de Perus sejam zonados, os índices de refração quase não variam nas zonas mais internas, sendo os índices relacionados na tabela anexa, os referentes às zonas intermediárias. Já nas zonas externas, os índices são sensivelmente inferiores aos descritos.

O ângulo de extinção, pode variar acentuadamente desde 41°, nas partes mais internas, 26° nas zonas intermediárias, até 16-18° nas zonas externas.

O beta-uranofânio é, muito provàvelmente, mineral de mistura isomorfa, como bem acentuam Novacek e Steinocher. Todavia, as características e a d'istribuição das diversas camadas descritas por aqueles autores, em cristais de Joachimsthal, não concordam com os dados observados nos cristais de Perus, o que se pode ver fàcilmente pela comparação abaixo (para medições com luz monocromática de sódio):

	Zonas ma	is internas	Zonas mais	s externas
	Joachimst	thal Perus	Joachimst	hal Perus
fndices de				
refração	maiores	menores	menores	maiores
Z/c	44-480	16-18°	52-57°	$41-26^{\circ}$

A extinção, observada com luz branca, nunca é completa, verificando-se grande dispersão da bissetriz obtusa (dispersão cruzada do plano dos eixos ópticos). A relação é: Z/c (vermelho) maior do que Z/c (violeta). (fig.4).

Côr de interferência anômala pode aparecer na extinção das placas deitadas sôbre a face 010.

Em geral, na maioria dos casos descritos na literatura, o beta-uranofânio mostra fraco pleocroísmo, com X = Y (amarelo limão) e X (incolor). Nos cristais de Perus, o pleocroísmo observado foi o seguinte: Z (amarelo limão), Y (amarelo), X (incolor).

DETERMINAÇÃO RÖNTGENOGRÁFICA

A determinação röntgenográfica foi executada em aparelho Norelco, tubo com anticátodo de Co, 30 kV, 10 mA, filtro de Fe, utilizando-se o método do pó de Debye-Scherrer, com câmara Philips de 114,6 mm de diâmetro.

O mineral reduzido a pó impalpável em almofariz de ágata (cêrca de 200 mesh) foi misturado com colódio Dupont (colatudo), confeccionando-se cilíndros com 1,5 cm de comprimento por cêrca de 1/4 mm de diâmetro.

Foi utilizado filme Kodak comum, para raios X, empregado em radiografia médica, filme de pouca sensibilidade que exigiu 24 horas de exposição. Aliás sendo o material um composto de urânio, a absorção foi bem acentuada.

Prèviamente foi obtido um diagrama do colódio puro, revelando-se dois halos cinzentos, largos e difusos, próximos ao orifício de saída do feixe primário de raios X ($\theta = 0^{\circ}$) Tais halos são característicos das substâncias amorfas, e pouco interferem nas medições das substâncias cristalizadas. Tabela 2 - Beta-uranofânio, Perus, São Paulo, SP, Brasil

Dados do diagrama de pó

ANTICÁTODO: CO FRONDEL (5)		FILTRO: FE		$\lambda = 1,7902$ A	
		GORMAN & NUFFIEI	(6) D	Camargo & Coutinho	
(JOAC	HIMSTHAL)	(JOACHIMSI	HAL)	(PERUS)	
d(A)	I	d(A)	I	d(A)	I
7.83	10	7.49	10	7.75	10
6 66	4	6.50	2	6.59	4
615	4	5.98	5	6.14	4
5.07	4	5.04	8	5 13	6
4.85	4			4.85	4
4.55	4	4 53	8	4.58	6
4 11	3	4 11	3	4.05	4
200	9	2 83	9	2.00	9
5,90	1	9.00	0	0,90	2
3,70	6	0.51	6	3,02	8
3,51	1	3,91	0	3,01	0
3 41	1	—	-	3,39	1
3,35	2			3,32	Z
3,19	0	3,17	1	3,20	C
3,04	4	3,02	8	2.98	0
2,99	3		-	2,95	3
2,91	2		_	2,88	1
2,78	3	2,80	9	2,80	e
2,83	4	-		2,74	2
2,59	5	2,58	6	2,57	5
2,41	2	1000		2,38	2
2,36	2	2,36	4	2,35	2
2,29	1	2,27	1/2	2,27	1
2,21	2	2,19	4	2,21	2
2,20	2	_		<u> </u>	
2,17	1	U	— — L	2,17	1
2,13	1	2,13	2	2,14	1
2,11	1	_		2,11	1
2.08	2	2,07	2	2.06	2
2,04	1			2.02	1
2,01	1	2,00	4	2.00	1
1,98	3	1.971	2	1,959	3
1,93	3	1 924	5	1 926	4
1.877	3	1.872	4	1 865	3
1.841	3	1 823	2	1,827	3
1 807	3	1020	_	1,047	-
1 778	2	1 783	2	1 760	9
1 734	3	1.705	2	1,709	2
1 701	2	1,747	0	1.727	0
1,659	1	1,090	1	1,092	2
1,000	9	1,001	5	1,049	L
1 500	1 /9	1,014	1/9	1.010	1 /0
1 551	1/2	1,019	1/4	1.087	1/2
1 500	1	1.040	2	1,543	T
1.028	-	1 918	2		1.00
1 404	1	1.450	-		-
1 494	1	1.478	1		
1.461	1	1,458	1/2		-

1,441	1	1.442	1/2		
1,417	1	1,411	1/2		_
1,388	1			1.369	1
1,358	2	1.347	4		
1,310	1			1,305	1
1,293	1	1,298	1	1.289	1
1,274	2	1,263	4	1,268	3
1,264	1	1,240	1	1.257	1
1,186	1	1,183	2		_
1,161	2	1,158	4	1,156	3
		1,138	2	1,136	3
		1,115	2	1.115	2
		1,085	3	1,086	3
		1,064	2	1,062	1
		1,045	1	1 056	1
		1,032	1	1,027	1
		1,013	1	1,011	1
		1,000	2		
		0,990	1	0,987	1
		0,976	1		
		0.967	2	0 965	2
		0,957	1	0,954	1
		0,947	3	0,946	3
		0,934	1	0,940	1
		0.920			

A confirmação do beta-uranofânio por via röntgenográfica foi executada por comparação com dados fornecidos por Frondel (5) e por Gorman & Nuffield (6), de acôrdo com a tabela 2, anexa.

Algumas raias, as mais fracas, não apareceram, talvez por falta de exposição suficiente. Entretanto, uma exposição mais prolongada provocaria um escurecimento do filme por difusão dos raios X no ar da câmara de pó, dificultando da mesma maneira o aparecimento das raias de intensidade mais fraca. Por tentativa, achamos a exposição de 24 horas, a mais conveniente para o beta-uranofânio, usando-se câmara de 114,6 mm.

As raias que apareceram no filme, entretanto foram mais do que suficientes para confirmar a espécie mineral. As pequenas discrepâncias de valores observadas entre os diversos autores citados, podem ser devidas a erros normais nas medidas.

PARAGÊNESE E GÊNESE

Embora já se tenha mencionado a presença, não reconhecida pelos autores, de uraninita primária (Knecht, 8) nos pegmatitos de Perus, pode-se pensar que a substância uranífera responsável pela mineralização secundária se origine de minerais acidentalmente uraníferos, muito comuns no pegmatito, entre os quais convém ressaltar a apatita.

Na apatita, principalmente na fluor-apatita, os ions de urânio podem substituir parcialmente os ions de cálcio (Heinrich, 7, Altschuler, Clark & Young, 1). O urânio se encontra na apatita provàvelmente sob a forma de U⁺⁴, pois os raios iônicos do Ca⁺² (0,99 A) e do U⁺⁴ (0,97 A) são muito semelhantes. A diferença de raios iônicos é bem inferior ao limite de 15%, estimado por Goldschmidt para substituições isomorfas na estrutura cristalina.

Segundo informações verbais de Henry Mau, a análise fluorímetrica da apatita de Perus, revelou traços de urânio.

Alterando-se a apatita, o urânio tetravalente se oxida a U^{+6} combinando-se com oxigênio e formando o ion uranila UO_2^{+2} , de grande estabilidade, e responsável pela formação da maioria dos minerais secundários de urânio.

Entretanto, achamos que o problema não pode ser definitivamente resolvido, especialmente para o caso do beta-uranofânio, o qual parece provir da alteração "in situ" de cristais primários, como sugere o contôrno poliédrico das cavidades. Além disso, os minerais restantes do pegmatito acham-se inalterados, inclusive a própria apatita da qual deveria provir.

É provável pois que o beta-uranofânio tenha se originado através d'a alteração hidrotermal de mineral uranífero primário mais profundamente situado, como por exemplo a uraninita.

BIBLIOGRAFIA

- ALTSCHULER, Z. S., CLARK, R. S. JR., & YOUNG, E. J. (1954) Uranium in apatite. Geol. Soc. Am. Bull. 65, pp. 1225-1226.
- ARMSTRONG, E. J. (1955) Schroeckingerite from Bedford, New York. Am. Min. 20, pp. 62-63.
- BRANCHE, G., CHEVERT, J. & GUILLEMIN, C. (1951) Nouvelles espécies uranifères françaises. Soc. Fr. Min. Cryst., 74, pp. 457-458.
- EMERSON, D. O., WRIGHT, H. D. (1957) Secondary uranium minerals at the W. Wilson mine in the Boulder Batholith, Montana. Am. Min. 42, pp. 222-239.
- 5) FRONDEL, C. (1958) Systematic Mineralogy of uranium and thorium. USGS Bull. 1064, pp. 307-311.
- GORMAN, D. H. & NUFFIELD, E. W. (1955 Studies on radioactive compounds. VIII — Uranophane and beta-uranophane. Am. Min., 40, 634-645.
- HEINRICH, E. W. (1958) Mineralogy and Geology of Radioactive Raw Materials. McGraw Hill Book Co., New York.
- KNECHT, T. (1937) Sôbre algumas novas ocorrências de minerais no Estado de São Paulo, Bol. Agricultura, n.º 5.
- LARSEN, E. S. (1921) The microscopic determination of non opaque minerals. USGS Bull. 679.
- MEIXNER, H. (1940) Notizen über neue Vorkommen einiger Uran Mineralien. Zent. Min. Abt. A, p. 145.
- NOVACEK, R. (1935) Study on some secondary uranium minerals. Am. Min. 20, p. 813.
- SATTERLY, J. (1955) Radioactive mineral occurrences in the vicinity of Hawk and Richard Lakes. Ontário Dept. Mines Geol., Circular n. 1.
- SATTERLY, J. (1955) Some radioactive mineral occurrences in the Buncroft area. Ontario Dept. Mines Geol., Circular n. 2.
- SCHOEP, A. & SCHOLZ, A. (1931) Sur les minéraux uranifères decourverts à Wölsendorf et sur un nouveau minéral d'uranium. Bol. Soc. Belge de Geol., 41, pp. 71-75.
- 15) STEINOCHER, V. & NOVACEK, R. (1939) On beta-uranotile. Am. Min., 24, pp. 325-338.